


●Extending ID3: 
●To permit numeric attributes: straightforward 

●To deal sensibly with missing values: trickier 

●Stability for noisy data:    requires pruning mechanism 

●End result: C4.5 (Quinlan) 
●Best-known and (probably) most widely-used learning 

algorithm 

●Commercial successor: C5.0 
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●Standard method: binary splits 
●E.g. temp < 45 

●Unlike nominal attributes, every attribute has 

many possible split points 

●Solution is straightforward extension: 
●Evaluate info gain (or other measure) for every possible split 

point of attribute 

●Choose “best” split point 

●Info gain for best split point is info gain for attribute 

●Computationally more demanding 
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… … … … … 

Yes False Normal Mild Rainy 

Yes False High Hot   Overcast 

No True High Hot Sunny 

No False High Hot Sunny 

Play Windy Humidity Temperature Outlook 

… … … … … 

Yes False Normal Mild Rainy 

Yes False High Hot   Overcast 

No True High Hot Sunny 

No False High Hot Sunny 

Play Windy Humidity Temperature Outlook 

… … … … … 

Yes False High Mild Rainy 

Yes False High Hot   Overcast 

No True High Hot Sunny 

No False High Hot Sunny 

Play Windy Humidity Temperature Outlook 

… … … … … … … … … … No True Normal Cool Rainy 

… … … … … … … … … … … … … … … 

… … … … … … … … … … Yes False Normal Cool Rainy 
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… … … … … 

Yes False Normal Mild Rainy 

Yes False High Hot   Overcast 

No True High Hot Sunny 

No False High Hot Sunny 

Play Windy Humidity Temperature Outlook 

… … … … … 

Yes False Normal Mild Rainy 

Yes False High Hot   Overcast 

No True High Hot Sunny 

No False High Hot Sunny 

Play Windy Humidity Temperature Outlook 

… … … … … 

Yes False High Mild Rainy 

Yes False High Hot   Overcast 

No True High Hot Sunny 

No False High Hot Sunny 

Play Windy Humidity Temperature Outlook 

… … … … … … … … … … No True Normal Cool Rainy 

… … … … … … … … … … … … … … … 

… … … … … … … … … … Yes False Normal Cool Rainy 

… … … … … 

Yes False Normal Mild Rainy 

Yes False High Hot   Overcast 

No True High Hot Sunny 

No False High Hot Sunny 

Play Windy Humidity Temperature Outlook 

… … … … … 

Yes False Normal Mild Rainy 

Yes False High Hot   Overcast 

No True High Hot Sunny 

No False High Hot Sunny 

Play Windy Humidity Temperature Outlook 

… … … … … 

Yes False 96 70 Rainy 

Yes False 86 83   Overcast 

No True 90 80 Sunny 

No False 85 85 Sunny 

Play Windy Humidity Temperature Outlook 

… … … … … … … … … … No True 70 65 Rainy 

… … … … … … … … … … … … … … … 

… … … … … … … … … … Yes False 80 68 Rainy 



●Split on temperature attribute: 

 

 
●E.g. temperature  71.5: yes/4, no/2 

   temperature  71.5: yes/5, no/3 

 

●Info([4,2],[5,3]) 

= 6/14 info([4,2]) + 8/14 info([5,3])  

= 0.939 bits 

●Place split points halfway between values 

●Can evaluate all split points in one pass! 
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 64     65     68     69     70     71     72     72     75     75     80     81     83     85 

Yes  No  Yes  Yes  Yes  No  No  Yes  Yes  Yes  No  Yes  Yes  No 



●Sort instances by the values of the numeric 

attribute 
●Time complexity for sorting: O (n log n) 

●Does this have to be repeated at each node 

of the tree? 

●No! Sort order for children can be derived 

from sort order for parent 
●Time complexity of derivation: O (n) 

●Drawback: need to create and store an array of sorted 

indices for each numeric attribute 7 



●Splitting (multi-way) on a nominal attribute 

exhausts all information in that attribute 
●Nominal attribute is tested (at most) once on any path in the tree 

●Not so for binary splits on numeric attributes! 
●Numeric attribute may be tested several times along a path in the 

tree 

●Disadvantage: tree is hard to read 

●Remedy: 
●Pre-discretize numeric attributes, or 

●Use multi-way splits instead of binary ones 
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●Split on temperature attribute: 
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 64     65     68     69     70     71     72     72     75     75     80     81     83     85 
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●Split instances with missing values into pieces 
●A piece going down a branch receives a weight proportional to the 

popularity of the branch 

●Weights sum to 1 

●During classification, split the instance into pieces 

in the same way 
●Merge probability distribution using weights 
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●Prevent overfitting to noise in the data 

●“Prune” the decision tree 

●Two strategies: 
●Postpruning 
Take a fully-grown decision tree and discard unreliable parts 

●Prepruning 
Stop growing a branch when information becomes unreliable 

●Postpruning preferred in practice—
prepruning can “stop early” 
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●Based on statistical significance test 
●Stop growing the tree when there is no statistically 

significant association between any attribute and the class at 

a particular node 

●ID3 used chi-squared test in addition to 

information gain 
●Only statistically significant attributes were allowed to be 

selected by information gain procedure 
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●Pre-pruning may stop the growth process prematurely: 

early stopping 

●Classic example: XOR/Parity-problem 

●No individual attribute exhibits any significant association to the 

class 

●Structure is only visible in fully expanded tree 

●Prepruning won’t expand the root node 

●But: XOR-type problems rare in practice 

●And: prepruning faster than postpruning 
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a 

0 1 4 

1 0 3 

class b 



●First, build full tree 

●Then, prune it 
●Fully-grown tree shows all attribute interactions 

●Two pruning operations: 
●Subtree replacement 

●Subtree raising 

●Possible strategies: 
●Error estimation 

●Significance testing 

●MDL principle 
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●Bottom-up 

●Consider replacing a tree only after considering all its 

subtrees 
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●Delete node 

●Redistribute instances 

●Slower than subtree replacement 
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●Prune only if it does not increase the estimated 
error 

●Error on the training data is NOT a useful 
estimator (would result in almost no pruning) 

●Use hold-out set for pruning (“reduced-error 
pruning”) 
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●Assume 
●m attributes 

●n training instances 

●tree depth O (log n) 

●Building a tree O (m n log n) 

●Subtree replacement O (n) 

●Subtree raising O (n (log n)2) 
●Every instance may have to be redistributed at every node 

between its leaf and the root 

●Cost for redistribution (on average): O (log n) 

Total cost: O (m n log n) + O (n (log n)2) 
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●Simple way: one rule for each leaf 

●C4.5rules: greedily prune conditions from each rule if this 

reduces its estimated error 

●Can produce duplicate rules 

●Check for this at the end 

●Then 

●Look at each class in turn 

●Consider the rules for that class 

●Find a “good” subset (guided by MDL) 

●Then rank the subsets to avoid conflicts 

●Finally, remove rules (greedily) if this decreases error on 

the training data 
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●C4.5rules slow for large and noisy datasets 

●Commercial version C5.0 rules use a 

different technique 
●Much faster and a bit more accurate 

●C4.5 has two parameters 
●Confidence value (default 25%): 

lower values incur heavier pruning 

●Minimum number of instances in the two most popular 

branches (default 2) 
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● C4.5's postpruning often 
does not prune enough 

 Tree size continues to 
grow when more 
instances are added 
even if performance on 
independent data does 
not improve 

 Very fast and popular 
in practice 

● Can be worthwhile in 
some cases to strive for a 
more compact tree 

 At the expense of more 
computational effort 

 Cost-complexity 
pruning method from 
the CART 
(Classification and 
Regression Trees) 
learning system 
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● Basic idea: 

 First prune subtrees 
that, relative to their 
size, lead to the 
smallest increase in 
error on the training 
data 

 Increase in error (α) – 
average error increase 
per leaf of subtree 

 Pruning generates a 
sequence of 
successively smaller 
trees 

● Each candidate tree 
in the sequence 
corresponds to one 
particular threshold 
value, αi 

 Which tree to chose as 
the final model? 

● Use either a hold-out 
set or cross-
validation to estimate 
the error of each 
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●The most extensively studied method of machine 

learning used in inductive learning 

●Different criteria for attribute/test selection rarely 

make a large difference 

●Different pruning methods mainly change the size 

of the resulting pruned tree 
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●Can convert decision tree 
into a rule set 

 Straightforward, but rule 
set overly complex 

 More effective 
conversions are not trivial 

●Instead, can generate rule 
set directly 

 For each class in turn find 
rule set that covers all 
instances in it (excluding 
instances not in the class) 

●Called a covering 
approach: 

 At each stage a rule is 
identified that “covers” 
some of the instances 
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●Possible rule set for class “b”: 

 

 

 

●Could add more rules, get “perfect” 
rule set 
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If x > 1.2 

then class = a 

If x > 1.2 and y > 2.6 

then class = a 

If ??? 

then class = a 

If x  1.2 then class = b 

If x > 1.2 and y  2.6 then class = b 



Corresponding decision tree: 

(produces exactly the same 

  predictions) 

 

●But rule sets can be clearer when 
decision trees suffer from replicated 
subtrees 

●Also, in multiclass situations, 
covering algorithm concentrates on 
one class at a time whereas decision 
tree learner takes all classes into 
account 
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●Generates a rule by 

adding tests that 

maximize rule’s 

accuracy 

●Similar to situation in 

decision trees: problem 

of selecting an attribute 

to split on 

But decision tree 

inducer maximizes 

overall purity  

●Each new test reduces 

rule’s coverage 
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●Goal: Maximize 

Accuracy 

 t  total number of 

instances covered by rule 

 p positive examples of the 

class covered by rule 

 t – p number of errors 

made by rule 

Select test that maximizes 

the ratio p/t 

●We are finished when p/t 

= 1 or the set of instances 

can’t be split any further 
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●Rule we seek: 

 

●Possible tests: 
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4/12 Tear production rate = Normal 

0/12 Tear production rate = Reduced 

4/12 Astigmatism = yes 

0/12 Astigmatism = no 

1/12 Spectacle prescription = Hypermetrope 

3/12 Spectacle prescription = Myope 

1/8 Age = Presbyopic 

1/8 Age = Pre-presbyopic 

2/8 Age = Young 

If ? 

    then recommendation = hard 



●Rule with best test added: 

 

 

 

●Instances covered by modified rule 
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None Reduced Yes Hypermetrope Pre-presbyopic 

None Normal Yes Hypermetrope Pre-presbyopic 

None Reduced Yes Myope Presbyopic 

Hard Normal Yes Myope Presbyopic 

None Reduced Yes Hypermetrope Presbyopic 

None Normal Yes Hypermetrope Presbyopic 

Hard Normal Yes Myope Pre-presbyopic 

None Reduced Yes Myope Pre-presbyopic 

hard Normal Yes Hypermetrope Young 

None Reduced Yes Hypermetrope Young 

Hard Normal Yes Myope Young 

None Reduced Yes Myope Young 

Recommended 
lenses 

Tear production 
rate 

Astigmatism Spectacle prescription Age 

If astigmatism = yes  

    then recommendation = hard 



●Current state: 

 

 

 

●Possible tests: 
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4/6 Tear production rate = Normal 

0/6 Tear production rate = Reduced 

1/6 Spectacle prescription = Hypermetrope 

3/6 Spectacle prescription = Myope 

1/4 Age = Presbyopic 

1/4 Age = Pre-presbyopic 

2/4 Age = Young 

If astigmatism = yes 

    and ?  

  then recommendation = hard 



●Rule with best test added: 

 

 

 

●Instances covered by modified rule: 
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None Normal Yes Hypermetrope Pre-presbyopic 
Hard Normal Yes Myope Presbyopic 
None Normal Yes Hypermetrope Presbyopic 

Hard Normal Yes Myope Pre-presbyopic 
hard Normal Yes Hypermetrope Young 
Hard Normal Yes Myope Young 

Recommended 
lenses 

Tear production 
rate 

Astigmatism Spectacle prescription Age 

If astigmatism = yes 

    and tear production rate = normal   

then recommendation = hard 



●Current state: 

 

 

 

●Possible tests: 

 

 

 

 

 

●Tie between the first and 
the fourth test 

 We choose the one with 
greater coverage 
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1/3 Spectacle prescription = Hypermetrope 

3/3 Spectacle prescription = Myope 

1/2 Age = Presbyopic 

1/2 Age = Pre-presbyopic 

2/2 Age = Young 

If astigmatism = yes  

  and tear production rate = normal 

  and ? 

then recommendation = hard 



●Final rule: 

 

 

●Second rule for 
recommending “hard 
lenses”: 
(built from instances not 
covered by first rule) 

 

 

 

●These two rules cover all 
“hard lenses”: 

 The process is then 
repeated with other two 
classes 
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If astigmatism = yes 

and tear production rate = normal 

and spectacle prescription = myope 

then recommendation = hard 

If age = young and astigmatism = yes 

and tear production rate = normal 

then recommendation = hard 
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For each class C 

  Initialize E to the instance set 

  While E contains instances in class C 

    Create a rule R with an empty left-hand side that predicts class C 

    Until R is perfect (or there are no more attributes to use) do 

      For each attribute A not mentioned in R, and each value v, 

        Consider adding the condition A = v to the left-hand side of R 

        Select A and v to maximize the accuracy p/t 

          (break ties by choosing the condition with the largest p) 

      Add A = v to R 

    Remove the instances covered by R from E 



●PRISM with outer loop 
removed generates a 
decision list for one class 

 Subsequent rules are 
designed for rules that are 
not covered by previous 
rules 

 But: order doesn’t matter 
because all rules predict 
the same class 

●Outer loop considers all 
classes separately 

 No order dependence 
implied 

●Problems: overlapping 
rules, default rule 
required 
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●Methods like PRISM (for 

dealing with one class) 

are separate-and-conquer 

algorithms: 

 First, identify a useful rule 

 Then, separate out all the 

instances it covers 

 Finally, “conquer” the 

remaining instances 

●Difference to divide-and-

conquer methods: 

 Subset covered by rule 

doesn’t need to be 

explored any further 
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●Common treatment of missing values: 

for any test, they fail 
●Algorithm must either 

●Use other tests to separate out positive instances 

●Leave them uncovered until later in the process 

●In some cases it’s better to treat “missing” as a 

separate value 

●Numeric attributes are treated just like they are in 

decision trees 
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●Two main strategies: 
●Incremental pruning 

●Global pruning 

●Other difference: pruning criterion 
●Error on hold-out set (reduced-error pruning) 

●Statistical significance 

●MDL principle 
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●For statistical validity, must evaluate measure on 

data not used for training: 
●This requires a growing set and a pruning set 

●Reduced-error pruning : 

Build full rule set and then prune it 

●Incremental reduced-error pruning :  

Simplify each rule as soon as it is built 
●Can re-split data after rule has been pruned 

●Stratification advantageous 
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●Generating rules for classes in order 
●Start with the smallest class 

●Leave the largest class covered by the default rule 

●Stopping criterion 
●Stop rule production if accuracy becomes too low 

●Rule learner RIPPER: 
●Uses MDL-based stopping criterion 

●Employs post-processing step to modify rules guided by 

MDL criterion 
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●RIPPER: Repeated Incremental Pruning to Produce Error 

Reduction (does global optimization in an efficient way) 

Classes are processed in order of increasing size 

Initial rule set for each class is generated using IREP 

●An MDL-based stopping condition is used 

●Once a rule set has been produced for each class, each 

rule is re-considered and two variants are produced 

●One is an extended version, one is grown from scratch 

●Chooses among three candidates according to DL 

●Final clean-up step greedily deletes rules to minimize DL 

43 



●Avoids global optimization step used in 

C4.5rules and RIPPER 

●Builds a partial decision tree to obtain a rule 

●Uses C4.5’s procedures to build a tree 
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●Make leaf with maximum coverage into a 

rule 

●Treat missing values just as C4.5 does 
●i.e. split instance into pieces 

●Time taken to generate a rule: 
●Worst case: same as for building a pruned tree 

●Occurs when data is noisy 

●Best case: same as for building a single rule 

●Occurs when data is noise free 
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1.Given: a way of generating a single good rule 

2.Then it’s easy to generate rules with exceptions 

3.Select default class for top-level rule 

4.Generate a good rule for one of the remaining 

classes 

5.Apply this method recursively to the two subsets 

produced by the rule (i.e. instances that are covered/not 

covered) 
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