Learning from Observations – Decision Trees

Decision Trees

•Extending ID3:

•To permit numeric attributes: straightforward

•To deal sensibly with missing values: trickier

.Stability for noisy data: requires pruning mechanism

End result: C4.5 (Quinlan)

 Best-known and (probably) most widely-used learning algorithm

Commercial successor: C5.0

Numeric Attributes

.Standard method: binary splits

•E.g. temp < 45

Unlike nominal attributes, every attribute has many possible split points

.Solution is straightforward extension:

- •Evaluate info gain (or other measure) for every possible split point of attribute
- .Choose "best" split point
- Info gain for best split point is info gain for attribute
- .Computationally more demanding

Weather Data (Again!)

Outlook	Temperature	e Humidity	Windy	Play]	
Sunny	Hot	High	False	No	1	
Sunny	Hot	High	True	No		
Overcast	Hot	High	False	Yes		
Rainy	Mild	High	False	Yes		
Rainy	Cool	Normal	False	Yes		
Rainy	Cool	Outlook	Temperature	Humidity	Windy	Play
		Sunny	85	85	False	No
		Sunny	80	90	True	No
		Overcast	83	86	False	Yes
		Rainy	70	96	False	Yes
		Rainy	68	80	False	Yes
		Rainy	65	70	True	No

Example

.Split on temperature attribute:

64	65	68	69	70	71	72	72	75	75	80	81	. 83	85	
Yes	No	Yes	Yes	Yes	No	No	Yes	Yes	Ye	s N	Io	Yes	Yes	No

•E.g. temperature < 71.5: yes/4, no/2 temperature \geq 71.5: yes/5, no/3

Place split points halfway between values
 Can evaluate all split points in one pass!

Can Avoid Repeated Sorting

.Sort instances by the values of the numeric attribute

•Time complexity for sorting: $O(n \log n)$

Does this have to be repeated at each node of the tree?

No! Sort order for children can be derived from sort order for parent

•Time complexity of derivation: O (n)

•Drawback: need to create and store an array of sorted indices for each numeric attribute

Binary vs Multiway Splits

.Splitting (multi-way) on a nominal attribute exhausts all information in that attribute

Nominal attribute is tested (at most) once on any path in the tree

.Not so for binary splits on numeric attributes!

Numeric attribute may be tested several times along a path in the tree

Disadvantage: tree is hard to read

.Remedy:

.Pre-discretize numeric attributes, or

Use multi-way splits instead of binary ones

Example

.Split on temperature attribute:

64	65	68	69	70	71	72	72	75	75	80	81	. 83	8 85	
Yes	No	Yes	Yes	Yes	No	No	Yes	Yes	Ye	s N	ю	Yes	Yes	No

Missing Values

.Split instances with missing values into pieces

•A piece going down a branch receives a weight proportional to the popularity of the branch

.Weights sum to 1

During classification, split the instance into pieces in the same way

.Merge probability distribution using weights

Pruning

Prevent overfitting to noise in the data

."Prune" the decision tree

•Two strategies:

Postpruning

Take a fully-grown decision tree and discard unreliable parts

Prepruning

Stop growing a branch when information becomes unreliable

 Postpruning preferred in practice prepruning can "stop early"

Prepruning

Based on statistical significance test

•Stop growing the tree when there is no *statistically significant* association between any attribute and the class at a particular node

.ID3 used chi-squared test in addition to information gain

•Only statistically significant attributes were allowed to be selected by information gain procedure

Early Stopping

.Pre-pruning may stop the growth process prematurely: *early stopping*

.Classic example: XOR/Parity-problem

 No individual attribute exhibits any significant association to the class

1

2

3

4

.Structure is only visible in fully expanded tree

.Prepruning won't expand the root node

.But: XOR-type problems rare in practice

.And: prepruning faster than postpruning

Postpruning

•First, build full tree

Then, prune it

.Fully-grown tree shows all attribute interactions

•Two pruning operations:

- .Subtree replacement
- .Subtree raising

Possible strategies:

- Error estimation
- .Significance testing
- •MDL principle

Subtree Replacement

.Bottom-up

.Consider replacing a tree only after considering all its subtrees

Subtree Raising

- .Delete node
- .Redistribute instances
- .Slower than subtree replacement

Estimating Error Rates

.Prune only if it does not increase the estimated error

Error on the training data is NOT a useful estimator (would result in almost no pruning)

.Use hold-out set for pruning ("reduced-error pruning")

Complexity of Tree Induction

Assume

- .m attributes
- *n* training instances
- .tree depth O (log n)
- Building a tree

O (*m n* log *n*)

- Subtree replacement O(n)
- .Subtree raising

O (*n* (log *n*)²)

•Every instance may have to be redistributed at every node between its leaf and the root

•Cost for redistribution (on average): O (log n)

•Total cost: $O(m n \log n) + O(n (\log n)^2)$

From Trees to Rules

.Simple way: one rule for each leaf

•C4.5rules: greedily prune conditions from each rule if this reduces its estimated error

.Can produce duplicate rules

.Check for this at the end

.Then

- Look at each class in turn
- Consider the rules for that class
- .Find a "good" subset (guided by MDL)
- .Then rank the subsets to avoid conflicts

•Finally, remove rules (greedily) if this decreases error on the training data

C4.5: Choices and Options

.C4.5rules slow for large and noisy datasets

.Commercial version C5.0 rules use a different technique

.Much faster and a bit more accurate

.C4.5 has two parameters

•Confidence value (default 25%): lower values incur heavier pruning

Minimum number of instances in the two most popular branches (default 2)

- C4.5's postpruning often does not prune enough
 - Tree size continues to grow when more instances are added even if performance on independent data does not improve
 - Very fast and popular in practice
- Can be worthwhile in some cases to strive for a more compact tree
 - At the expense of more computational effort
 - Cost-complexity pruning method from the CART (Classification and Regression Trees) learning system

Cost-Complexity Pruning

- Basic idea:
 - First prune subtrees that, relative to their size, lead to the smallest increase in error on the training data
 - Increase in error (α) average error increase per leaf of subtree
 - Pruning generates a sequence of successively smaller trees
 - Each candidate tree in the sequence corresponds to one particular threshold value, α_i
 - Which tree to chose as the final model?
 - Use either a hold-out set or crossvalidation to estimate the error of each

Cost-Complexity Pruning

Discussion

The most extensively studied method of machine learning used in inductive learning

Different criteria for attribute/test selection rarely make a large difference

 Different pruning methods mainly change the size of the resulting pruned tree

Learning from Observations – Rules

Can convert decision tree into a rule set

- Straightforward, but rule set overly complex
- More effective conversions are not trivial

Instead, can generate rule set directly

• For each class in turn find rule set that covers all instances in it (excluding instances not in the class)

.Called a *covering* approach:

• At each stage a rule is identified that "covers" some of the instances

Covering Algorithms

Example: Generating a Rule

•Possible rule set for class "b":

If $x \le 1.2$ then class = b If x > 1.2 and $y \le 2.6$ then class = b

•Could add more rules, get "perfect" rule set

Corresponding decision tree: (produces exactly the same predictions)

But rule sets *can* be clearer when decision trees suffer from replicated subtrees

Also, in multiclass situations, covering algorithm concentrates on one class at a time whereas decision tree learner takes all classes into account

Rules vs. Trees

Generates a rule by adding tests that maximize rule's accuracy

Similar to situation in decision trees: problem of selecting an attribute to split on

 But decision tree inducer maximizes overall purity

.Each new test reduces rule's coverage

Simple Covering Algorithm

.Goal: Maximize Accuracy

- *t* total number of instances covered by rule
- *p* positive examples of the class covered by rule
- *t* − *p* number of errors made by rule
- \Rightarrow Select test that maximizes the ratio p/t

We are finished when p/t= 1 or the set of instances can't be split any further

Selecting a Test

Example: Contact Lens Data

.Rule we seek:

If ?
 then recommendation = hard

.Possible tests:

Age = Young	2/8
Age = Pre-presbyopic	1/8
Age = Presbyopic	1/8
Spectacle prescription = Myope	3/12
Spectacle prescription = Hypermetrope	1/12
Astigmatism = no	0/12
Astigmatism = yes	4/12
Tear production rate = Reduced	0/12
Tear production rate = Normal	4/12

Modified Rule and Resulting

Rule with best test added:

Data

If astigmatism = yes
 then recommendation = hard

.Instances covered by modified rule

Age	Spectacle prescription	Astigmatism	Tear production	Recommended
			rate	lenses
Young	Муоре	Yes	Reduced	None
Young	Муоре	Yes	Normal	Hard
Young	Hypermetrope	Yes	Reduced	None
Young	Hypermetrope	Yes	Normal	hard
Pre-presbyopic	Муоре	Yes	Reduced	None
Pre-presbyopic	Муоре	Yes	Normal	Hard
Pre-presbyopic	Hypermetrope	Yes	Reduced	None
Pre-presbyopic	Hypermetrope	Yes	Normal	None
Presbyopic	Муоре	Yes	Reduced	None
Presbyopic	Муоре	Yes	Normal	Hard
Presbyopic	Hypermetrope	Yes	Reduced	None
Presbyopic	Hypermetrope	Yes	Normal	None

Further Refinement

.Current state:

If astigmatism = yes
 and ?
 then recommendation = hard

.Possible tests:

Age = Young	2/4
Age = Pre-presbyopic	1/4
Age = Presbyopic	1/4
Spectacle prescription = Myope	3/6
Spectacle prescription = Hypermetrope	1/6
Tear production rate = Reduced	0/6
Tear production rate = Normal	4/6

Modified Rule and Resulting Data

.Rule with best test added:

If astigmatism = yes
 and tear production rate = normal
then recommendation = hard

.Instances covered by modified rule:

Age	Spectacle prescription	Astigmatism	Tear production	Recommended
			rate	lenses
Young	Муоре	Yes	Normal	Hard
Young	Hypermetrope	Yes	Normal	hard
Pre-presbyopic	Муоре	Yes	Normal	Hard
Pre-presbyopic	Hypermetrope	Yes	Normal	None
Presbyopic	Муоре	Yes	Normal	Hard
Presbyopic	Hypermetrope	Yes	Normal	None

.Current state:

If astigmatism = yes
 and tear production rate = normal
 and ?
 then recommendation = hard Further

.Possible tests:

Refinement

Age = Young	2/2
Age = Pre-presbyopic	1/2
Age = Presbyopic	1/2
Spectacle prescription = Myope	3/3
Spectacle prescription = Hypermetrope	1/3

- Tie between the first and the fourth test
 - We choose the one with greater coverage

•Final rule: If astigmatism = yes and tear production rate = normal and spectacle prescription = myope then recommendation = hard

Second rule for recommending "hard lenses": (built from instances not covered by first rule)

The Result

```
If age = young and astigmatism = yes
and tear production rate = normal
then recommendation = hard
```

These two rules cover all "hard lenses":

• The process is then repeated with other two classes

Pseudo-Code for PRISM

For each class C
Initialize E to the instance set
While E contains instances in class C
Create a rule R with an empty left-hand side that predicts class C
Until R is perfect (or there are no more attributes to use) do
For each attribute A not mentioned in R, and each value v,
Consider adding the condition A = v to the left-hand side of R
Select A and v to maximize the accuracy p/t
(break ties by choosing the condition with the largest p)
Add A = v to R

Remove the instances covered by R from E

.PRISM with outer loop removed generates a decision list for one class

- Subsequent rules are designed for rules that are not covered by previous rules
- But: order doesn't matter because all rules predict the same class

Outer loop considers all classes separately

• No order dependence implied

 Problems: overlapping rules, default rule required

Rules vs. Decision Lists

Methods like PRISM (for dealing with one class) are *separate-and-conquer* algorithms:

- First, identify a useful rule
- Then, separate out all the instances it covers
- Finally, "conquer" the remaining instances

Difference to divide-andconquer methods:

 Subset covered by rule doesn't need to be explored any further Separate and Conquer

Missing Values, Numeric Attributes

.Common treatment of missing values: for any test, they fail

- .Algorithm must either
 - .Use other tests to separate out positive instances
 - .Leave them uncovered until later in the process

In some cases it's better to treat "missing" as a separate value

Numeric attributes are treated just like they are in decision trees

Pruning Rules

.Two main strategies:

- .Incremental pruning
- .Global pruning

.Other difference: pruning criterion

- .Error on hold-out set (reduced-error pruning)
- Statistical significance
- •MDL principle

Using a Pruning Set

•For statistical validity, must evaluate measure on data not used for training:

.This requires a growing set and a pruning set

.*Reduced-error pruning* :

•Build full rule set and then prune it

.Incremental reduced-error pruning :

•Simplify each rule as soon as it is built

.Can re-split data after rule has been pruned

.Stratification advantageous

Variations

.Generating rules for classes in order

.Start with the smallest class

.Leave the largest class covered by the default rule

.Stopping criterion

.Stop rule production if accuracy becomes too low

.Rule learner RIPPER:

.Uses MDL-based stopping criterion

 Employs post-processing step to modify rules guided by MDL criterion

Using Global Optimization

•RIPPER: Repeated Incremental Pruning to Produce Error Reduction (does global optimization in an efficient way)

- Classes are processed in order of increasing size
- Initial rule set for each class is generated using IREP
- .An MDL-based stopping condition is used

Once a rule set has been produced for each class, each rule is re-considered and two variants are produced

.One is an extended version, one is grown from scratch

.Chooses among three candidates according to DL

.Final clean-up step greedily deletes rules to minimize DL

PART

Avoids global optimization step used in C4.5rules and RIPPER

Builds a *partial* decision tree to obtain a rule
Uses C4.5's procedures to build a tree

Notes on PART

Make leaf with maximum coverage into a rule

.Treat missing values just as C4.5 does

.i.e. split instance into pieces

.Time taken to generate a rule:

- .Worst case: same as for building a pruned tree
 - •Occurs when data is noisy
- Best case: same as for building a single rule
 - .Occurs when data is noise free

Rules with Exceptions

- 1.Given: a way of generating a single good rule2.Then it's easy to generate rules with exceptions3.Select default class for top-level rule4.Generate a good rule for one of the remaining
- classes
- 5.Apply this method recursively to the two subsets produced by the rule (i.e. instances that are covered/not covered)