

●Extending ID3:
●To permit numeric attributes: straightforward

●To deal sensibly with missing values: trickier

●Stability for noisy data: requires pruning mechanism

●End result: C4.5 (Quinlan)
●Best-known and (probably) most widely-used learning

algorithm

●Commercial successor: C5.0

2

●Standard method: binary splits
●E.g. temp < 45

●Unlike nominal attributes, every attribute has

many possible split points

●Solution is straightforward extension:
●Evaluate info gain (or other measure) for every possible split

point of attribute

●Choose “best” split point

●Info gain for best split point is info gain for attribute

●Computationally more demanding
3

4

… … … … …

Yes False Normal Mild Rainy

Yes False High Hot Overcast

No True High Hot Sunny

No False High Hot Sunny

Play Windy Humidity Temperature Outlook

… … … … …

Yes False Normal Mild Rainy

Yes False High Hot Overcast

No True High Hot Sunny

No False High Hot Sunny

Play Windy Humidity Temperature Outlook

… … … … …

Yes False High Mild Rainy

Yes False High Hot Overcast

No True High Hot Sunny

No False High Hot Sunny

Play Windy Humidity Temperature Outlook

… … … … … … … … … … No True Normal Cool Rainy

… … … … … … … … … … … … … … …

… … … … … … … … … … Yes False Normal Cool Rainy

5

… … … … …

Yes False Normal Mild Rainy

Yes False High Hot Overcast

No True High Hot Sunny

No False High Hot Sunny

Play Windy Humidity Temperature Outlook

… … … … …

Yes False Normal Mild Rainy

Yes False High Hot Overcast

No True High Hot Sunny

No False High Hot Sunny

Play Windy Humidity Temperature Outlook

… … … … …

Yes False High Mild Rainy

Yes False High Hot Overcast

No True High Hot Sunny

No False High Hot Sunny

Play Windy Humidity Temperature Outlook

… … … … … … … … … … No True Normal Cool Rainy

… … … … … … … … … … … … … … …

… … … … … … … … … … Yes False Normal Cool Rainy

… … … … …

Yes False Normal Mild Rainy

Yes False High Hot Overcast

No True High Hot Sunny

No False High Hot Sunny

Play Windy Humidity Temperature Outlook

… … … … …

Yes False Normal Mild Rainy

Yes False High Hot Overcast

No True High Hot Sunny

No False High Hot Sunny

Play Windy Humidity Temperature Outlook

… … … … …

Yes False 96 70 Rainy

Yes False 86 83 Overcast

No True 90 80 Sunny

No False 85 85 Sunny

Play Windy Humidity Temperature Outlook

… … … … … … … … … … No True 70 65 Rainy

… … … … … … … … … … … … … … …

… … … … … … … … … … Yes False 80 68 Rainy

●Split on temperature attribute:

●E.g. temperature  71.5: yes/4, no/2

 temperature  71.5: yes/5, no/3

●Info([4,2],[5,3])

= 6/14 info([4,2]) + 8/14 info([5,3])

= 0.939 bits

●Place split points halfway between values

●Can evaluate all split points in one pass!
6

 64 65 68 69 70 71 72 72 75 75 80 81 83 85

Yes No Yes Yes Yes No No Yes Yes Yes No Yes Yes No

●Sort instances by the values of the numeric

attribute
●Time complexity for sorting: O (n log n)

●Does this have to be repeated at each node

of the tree?

●No! Sort order for children can be derived

from sort order for parent
●Time complexity of derivation: O (n)

●Drawback: need to create and store an array of sorted

indices for each numeric attribute 7

●Splitting (multi-way) on a nominal attribute

exhausts all information in that attribute
●Nominal attribute is tested (at most) once on any path in the tree

●Not so for binary splits on numeric attributes!
●Numeric attribute may be tested several times along a path in the

tree

●Disadvantage: tree is hard to read

●Remedy:
●Pre-discretize numeric attributes, or

●Use multi-way splits instead of binary ones
8

●Split on temperature attribute:

9

 64 65 68 69 70 71 72 72 75 75 80 81 83 85

Yes No Yes Yes Yes No No Yes Yes Yes No Yes Yes No

●Split instances with missing values into pieces
●A piece going down a branch receives a weight proportional to the

popularity of the branch

●Weights sum to 1

●During classification, split the instance into pieces

in the same way
●Merge probability distribution using weights

10

●Prevent overfitting to noise in the data

●“Prune” the decision tree

●Two strategies:
●Postpruning
Take a fully-grown decision tree and discard unreliable parts

●Prepruning
Stop growing a branch when information becomes unreliable

●Postpruning preferred in practice—
prepruning can “stop early”

11

●Based on statistical significance test
●Stop growing the tree when there is no statistically

significant association between any attribute and the class at

a particular node

●ID3 used chi-squared test in addition to

information gain
●Only statistically significant attributes were allowed to be

selected by information gain procedure

12

●Pre-pruning may stop the growth process prematurely:

early stopping

●Classic example: XOR/Parity-problem

●No individual attribute exhibits any significant association to the

class

●Structure is only visible in fully expanded tree

●Prepruning won’t expand the root node

●But: XOR-type problems rare in practice

●And: prepruning faster than postpruning

13

0 0 0 1

1 1 0 2

1

1

a

0 1 4

1 0 3

class b

●First, build full tree

●Then, prune it
●Fully-grown tree shows all attribute interactions

●Two pruning operations:
●Subtree replacement

●Subtree raising

●Possible strategies:
●Error estimation

●Significance testing

●MDL principle

14

●Bottom-up

●Consider replacing a tree only after considering all its

subtrees

15

●Delete node

●Redistribute instances

●Slower than subtree replacement

16

●Prune only if it does not increase the estimated
error

●Error on the training data is NOT a useful
estimator (would result in almost no pruning)

●Use hold-out set for pruning (“reduced-error
pruning”)

17

●Assume
●m attributes

●n training instances

●tree depth O (log n)

●Building a tree O (m n log n)

●Subtree replacement O (n)

●Subtree raising O (n (log n)2)
●Every instance may have to be redistributed at every node

between its leaf and the root

●Cost for redistribution (on average): O (log n)

Total cost: O (m n log n) + O (n (log n)2)

18

●Simple way: one rule for each leaf

●C4.5rules: greedily prune conditions from each rule if this

reduces its estimated error

●Can produce duplicate rules

●Check for this at the end

●Then

●Look at each class in turn

●Consider the rules for that class

●Find a “good” subset (guided by MDL)

●Then rank the subsets to avoid conflicts

●Finally, remove rules (greedily) if this decreases error on

the training data
19

●C4.5rules slow for large and noisy datasets

●Commercial version C5.0 rules use a

different technique
●Much faster and a bit more accurate

●C4.5 has two parameters
●Confidence value (default 25%):

lower values incur heavier pruning

●Minimum number of instances in the two most popular

branches (default 2)

20

● C4.5's postpruning often
does not prune enough

 Tree size continues to
grow when more
instances are added
even if performance on
independent data does
not improve

 Very fast and popular
in practice

● Can be worthwhile in
some cases to strive for a
more compact tree

 At the expense of more
computational effort

 Cost-complexity
pruning method from
the CART
(Classification and
Regression Trees)
learning system

21

● Basic idea:

 First prune subtrees
that, relative to their
size, lead to the
smallest increase in
error on the training
data

 Increase in error (α) –
average error increase
per leaf of subtree

 Pruning generates a
sequence of
successively smaller
trees

● Each candidate tree
in the sequence
corresponds to one
particular threshold
value, αi

 Which tree to chose as
the final model?

● Use either a hold-out
set or cross-
validation to estimate
the error of each

22

●The most extensively studied method of machine

learning used in inductive learning

●Different criteria for attribute/test selection rarely

make a large difference

●Different pruning methods mainly change the size

of the resulting pruned tree

23

●Can convert decision tree
into a rule set

 Straightforward, but rule
set overly complex

 More effective
conversions are not trivial

●Instead, can generate rule
set directly

 For each class in turn find
rule set that covers all
instances in it (excluding
instances not in the class)

●Called a covering
approach:

 At each stage a rule is
identified that “covers”
some of the instances

25

●Possible rule set for class “b”:

●Could add more rules, get “perfect”
rule set

 26

If x > 1.2

then class = a

If x > 1.2 and y > 2.6

then class = a

If ???

then class = a

If x  1.2 then class = b

If x > 1.2 and y  2.6 then class = b

Corresponding decision tree:

(produces exactly the same

 predictions)

●But rule sets can be clearer when
decision trees suffer from replicated
subtrees

●Also, in multiclass situations,
covering algorithm concentrates on
one class at a time whereas decision
tree learner takes all classes into
account

27

●Generates a rule by

adding tests that

maximize rule’s

accuracy

●Similar to situation in

decision trees: problem

of selecting an attribute

to split on

But decision tree

inducer maximizes

overall purity

●Each new test reduces

rule’s coverage

28

●Goal: Maximize

Accuracy

 t total number of

instances covered by rule

 p positive examples of the

class covered by rule

 t – p number of errors

made by rule

Select test that maximizes

the ratio p/t

●We are finished when p/t

= 1 or the set of instances

can’t be split any further

29

●Rule we seek:

●Possible tests:

30

4/12 Tear production rate = Normal

0/12 Tear production rate = Reduced

4/12 Astigmatism = yes

0/12 Astigmatism = no

1/12 Spectacle prescription = Hypermetrope

3/12 Spectacle prescription = Myope

1/8 Age = Presbyopic

1/8 Age = Pre-presbyopic

2/8 Age = Young

If ?

 then recommendation = hard

●Rule with best test added:

●Instances covered by modified rule

31

None Reduced Yes Hypermetrope Pre-presbyopic

None Normal Yes Hypermetrope Pre-presbyopic

None Reduced Yes Myope Presbyopic

Hard Normal Yes Myope Presbyopic

None Reduced Yes Hypermetrope Presbyopic

None Normal Yes Hypermetrope Presbyopic

Hard Normal Yes Myope Pre-presbyopic

None Reduced Yes Myope Pre-presbyopic

hard Normal Yes Hypermetrope Young

None Reduced Yes Hypermetrope Young

Hard Normal Yes Myope Young

None Reduced Yes Myope Young

Recommended
lenses

Tear production
rate

Astigmatism Spectacle prescription Age

If astigmatism = yes

 then recommendation = hard

●Current state:

●Possible tests:

32

4/6 Tear production rate = Normal

0/6 Tear production rate = Reduced

1/6 Spectacle prescription = Hypermetrope

3/6 Spectacle prescription = Myope

1/4 Age = Presbyopic

1/4 Age = Pre-presbyopic

2/4 Age = Young

If astigmatism = yes

 and ?

 then recommendation = hard

●Rule with best test added:

●Instances covered by modified rule:

33

None Normal Yes Hypermetrope Pre-presbyopic
Hard Normal Yes Myope Presbyopic
None Normal Yes Hypermetrope Presbyopic

Hard Normal Yes Myope Pre-presbyopic
hard Normal Yes Hypermetrope Young
Hard Normal Yes Myope Young

Recommended
lenses

Tear production
rate

Astigmatism Spectacle prescription Age

If astigmatism = yes

 and tear production rate = normal

then recommendation = hard

●Current state:

●Possible tests:

●Tie between the first and
the fourth test

 We choose the one with
greater coverage

34

1/3 Spectacle prescription = Hypermetrope

3/3 Spectacle prescription = Myope

1/2 Age = Presbyopic

1/2 Age = Pre-presbyopic

2/2 Age = Young

If astigmatism = yes

 and tear production rate = normal

 and ?

then recommendation = hard

●Final rule:

●Second rule for
recommending “hard
lenses”:
(built from instances not
covered by first rule)

●These two rules cover all
“hard lenses”:

 The process is then
repeated with other two
classes

35

If astigmatism = yes

and tear production rate = normal

and spectacle prescription = myope

then recommendation = hard

If age = young and astigmatism = yes

and tear production rate = normal

then recommendation = hard

36

For each class C

 Initialize E to the instance set

 While E contains instances in class C

 Create a rule R with an empty left-hand side that predicts class C

 Until R is perfect (or there are no more attributes to use) do

 For each attribute A not mentioned in R, and each value v,

 Consider adding the condition A = v to the left-hand side of R

 Select A and v to maximize the accuracy p/t

 (break ties by choosing the condition with the largest p)

 Add A = v to R

 Remove the instances covered by R from E

●PRISM with outer loop
removed generates a
decision list for one class

 Subsequent rules are
designed for rules that are
not covered by previous
rules

 But: order doesn’t matter
because all rules predict
the same class

●Outer loop considers all
classes separately

 No order dependence
implied

●Problems: overlapping
rules, default rule
required

37

●Methods like PRISM (for

dealing with one class)

are separate-and-conquer

algorithms:

 First, identify a useful rule

 Then, separate out all the

instances it covers

 Finally, “conquer” the

remaining instances

●Difference to divide-and-

conquer methods:

 Subset covered by rule

doesn’t need to be

explored any further

38

●Common treatment of missing values:

for any test, they fail
●Algorithm must either

●Use other tests to separate out positive instances

●Leave them uncovered until later in the process

●In some cases it’s better to treat “missing” as a

separate value

●Numeric attributes are treated just like they are in

decision trees

39

●Two main strategies:
●Incremental pruning

●Global pruning

●Other difference: pruning criterion
●Error on hold-out set (reduced-error pruning)

●Statistical significance

●MDL principle

40

●For statistical validity, must evaluate measure on

data not used for training:
●This requires a growing set and a pruning set

●Reduced-error pruning :

Build full rule set and then prune it

●Incremental reduced-error pruning :

Simplify each rule as soon as it is built
●Can re-split data after rule has been pruned

●Stratification advantageous

41

●Generating rules for classes in order
●Start with the smallest class

●Leave the largest class covered by the default rule

●Stopping criterion
●Stop rule production if accuracy becomes too low

●Rule learner RIPPER:
●Uses MDL-based stopping criterion

●Employs post-processing step to modify rules guided by

MDL criterion

42

●RIPPER: Repeated Incremental Pruning to Produce Error

Reduction (does global optimization in an efficient way)

Classes are processed in order of increasing size

Initial rule set for each class is generated using IREP

●An MDL-based stopping condition is used

●Once a rule set has been produced for each class, each

rule is re-considered and two variants are produced

●One is an extended version, one is grown from scratch

●Chooses among three candidates according to DL

●Final clean-up step greedily deletes rules to minimize DL

43

●Avoids global optimization step used in

C4.5rules and RIPPER

●Builds a partial decision tree to obtain a rule

●Uses C4.5’s procedures to build a tree

44

●Make leaf with maximum coverage into a

rule

●Treat missing values just as C4.5 does
●i.e. split instance into pieces

●Time taken to generate a rule:
●Worst case: same as for building a pruned tree

●Occurs when data is noisy

●Best case: same as for building a single rule

●Occurs when data is noise free

45

1.Given: a way of generating a single good rule

2.Then it’s easy to generate rules with exceptions

3.Select default class for top-level rule

4.Generate a good rule for one of the remaining

classes

5.Apply this method recursively to the two subsets

produced by the rule (i.e. instances that are covered/not

covered)

46

